P & N-Channel 20-V (D-S) MOSFET

These miniature surface mount MOSFETs utilize a high cell density trench process to provide low $r_{DS(on)}$ and to ensure minimal power loss and heat dissipation. Typical applications are DC-DC converters and power management in portable and battery-powered products such as computers, printers, PCMCIA cards, cellular and cordless telephones.

PRODUCT SUMMARY						
$V_{DS}(V)$	$r_{\mathrm{DS(on)}} \mathrm{m}(\Omega)$	$I_{D}(A)$				
30	$32 @ V_{GS} = 10V$	4.3				
	$46 @ V_{GS} = 4.5V$	3.7				
-30	$52 @ V_{GS} = -10V$	-3.8				
-30	$80 @ V_{GS} = -4.5V$	-2.8				

- Low $r_{DS(on)}$ provides higher efficiency and extends battery life
- Low thermal impedance copper leadframe TSSOP-8 saves board space
- Fast switching speed
- High performance trench technology

	TSSOP-8 Top View		D_1	\mathbb{S}_2
01 61 61	1 2 3 4	8	G ₁ o S ₁ S ₁ N-Channel MOSFET	G_2 0 D_2 P-Channel MOSFET

ABSOLUTE MAXIMUM RATINGS ($T_A = 25$ °C UNLESS OTHERWISE NOTED)						
Parameter			N-Channel	P-Channel	Units	
Drain-Source Voltage	V_{DS}	30	-30	V		
Gate-Source Voltage			±20	±20	v	
Continuous Drain Current ^a	$T_A=25^{\circ}C$	ī	4.3	-3.8		
Continuous Drain Current	$T_A=25^{\circ}C$ $T_A=70^{\circ}C$	1D	3.5	-3.0	A	
Pulsed Drain Current ^b			20	-20		
Continuous Source Current (Diode Conduction) ^a			1.0	-1.0	A	
D	$T_A=25^{\circ}C$	D	1.14	1.14	W	
Power Dissipation ^a	$T_A=25^{\circ}C$ $T_A=70^{\circ}C$	1 D	0.73	0.73	VV	
Operating Junction and Storage Temperature F	T_J, T_{stg}	-55 to 150	-55 to 150	°C		

THERMAL RESISTANCE RATINGS						
Parameter	Symbol	Тур	Max			
M	t <= 10 sec	D	88	110	0C/M	
Maximum Junction-to-Ambient ^a	Steady State	R_{thJA}	120	150	°C/W	

Notes

- a. Surface Mounted on 1" x 1" FR4 Board.
- b. Pulse width limited by maximum junction temperature

D	6 1	T + C III	Limits			TT*4		
Parameter	Symbol	Test Conditions	Ch	Min	Тур	Max	Unit	
Static								
Gate-Threshold Voltage	V _{GS(th)}	$V_{GS} = V_{DS}$, $I_D = 250 \text{ uA}$	N	1.0			V	
Gate-Tiffeshold Voltage	V GS(th)	$V_{GS} = V_{DS}$, $I_D = -250$ uA	P	-1.0				
Gate-Body Leakage	I_{GSS}	$V_{GS} = 20 \text{ V}, V_{DS} = 0 \text{ V}$ $V_{GS} = -20 \text{ V}, V_{DS} = 0 \text{ V}$	N P			±100 ±100	nA	
Zana Cata Waltaga Dunin Comunit	т		N			1	4	
Zero Gate Voltage Drain Current	I_{DSS}	$V_{DS} = 16 \text{ V}, V_{GS} = 0 \text{ V}$ $V_{DS} = -16 \text{ V}, V_{GS} = 0 \text{ V}$	P			-1	uA	
On-State Drain Current ^A	I _{D(on)}	$V_{DS} = 5 \text{ V}, V_{GS} = 10 \text{ V}$ $V_{DS} = -5 \text{ V}, V_{GS} = -10 \text{ V}$	N P	20			A	
	D(OII)	$V_{DS} = -5 \text{ V}, V_{GS} = -10 \text{ V}$ VGS = 10 V, ID = 4.3 A	Р	-20		32		
		VGS = 4.5 V, ID = 4.3 A VGS = 4.5 V, ID = 3.7 A	N	\vdash		46	ł	
Drain-Source On-Resistance ^A	$r_{DS(on)}$	VGS = -10 V, ID = -3.8 A				52	mΩ	
		$VGS = -4.5 \text{ V}, I_D = -2.8 \text{ A}$	P			80	1	
Forward Tranconductance ^A	g_{fs}	$V_{DS} = 15 \text{ V}, I_{D} = 4.3 \text{ A}$ $V_{DS} = -15 \text{ V}, I_{D} = -3.8 \text{ A}$	N		11		S	
	8ts	$V_{DS} = -15 \text{ V}, I_{D} = -3.8 \text{ A}$	P		11		_ s	
Dynamic								
Total Gate Charge	Qg	N. Cl.	N		4.7			
Total Gate Charge	Qg	N-Channel	P		8.0		nC	
Gate-Source Charge	Qgs	$V_{DS} = 15V, V_{GS} = 4.5V, I_{D} = 4.3A$	N P		1.8	-		
	-	P-Channel	N		1.5	+		
Gate-Drain Charge	Qgd	V _{DS} =-15V, V _{GS} =-4.5V, I _D =-3.8A	Р		4.5	1	1	
			N		13			
Turn-On Delay Time	t _{d(on)}	td(on) N-Chaneel	P		14		1	
Rise Time	tr	$V_{DD}=15V, V_{GS}=4.5V, I_{D}=1A$,	N		14		nS	
Kise Tillie	tr	$R_{\text{GEN}}=6\Omega$,	P		14			
Turn-Off Delay Time	td(off)	P-Channel	N		30	1		
	3(01)	V _{DD} =-15V, V _{GS} =-4.5V, I _D =-1A	P N		30	1	ļ	
Fall-Time	tf	$R_{GEN}=6\Omega$	P P		30	1	ļ	

Notes

- a. Pulse test: PW <= 300us duty cycle <= 2%.
- b. Guaranteed by design, not subject to production testing.

Package Information

TSSOP-8: 8LEAD

DIM.	MILLIMETERS					
	MIN.	NDM.	MAX.			
Α	1.05	1.10	1.20			
A(1)	0.05	0.10	0.15			
A(2)	0.99	1.02	1.05			
В	D.19	0.25	0.30			
C		0.127	-			
D	2.90	3.0D	3.10			
Ε	6.20	6.40	6.60			
E1	4.30	4.40	4.50			
В	0.659SC					
L	0.45	0.60	0.75			
L1	0.90	1.00	1.10			
Y			0.10			
8 1	O.	4	Ē.			
R	0.09					
S	0.20					