Dual N-Channel Logical Level MOSFET

These miniature surface mount MOSFETs utilize High Cell Density process. Low $r_{DS(on)}$ assures minimal power loss and conserves energy, making this device ideal for use in power management circuitry. Typical applications are DC-DC converters, power management in portable and battery-powered products such as computers, printers, PCMCIA cards, cellular and cordless telephones.

V _{DS} (V)	r _{DS(on)} (OHM)	I _D (A)
30	$0.099 @ V_{GS} = 10 V$	2.5
	$0.142 @ V_{GS} = 4.5V$	2.0

PRODUCT SUMMARY

- $\begin{array}{ll} \bullet & \quad \text{Low } r_{DS(on)} \, \text{Provides Higher Efficiency and} \\ \text{Extends Battery Life} \\ \end{array}$
- Miniature TSOP-6 Surface Mount Package Saves Board Space
- Very fast switching
- Lower gate charge (2.2 nC)

ABSOLUTE MAXIMUM RATINGS (T _A = 25 °C UNLESS OTHERWISE NOTED)							
Parameter	Symbol	Maximum	Units				
Drain-Source Voltage			30	V			
Gate-Source Voltage	V_{GS}	±20	v				
	$T_A=25^{\circ}C$	Τ_	2.5				
Continuous Drain Current ^a	$T_A=25^{\circ}C$ $T_A=70^{\circ}C$	П	2	A			
Pulsed Drain Current ^b		I_{DM}	10				
Continuous Source Current (Diode Conduction) ^a		I_S	±0.8	A			
D. D. dividia	$T_A=25^{\circ}C$	$\Big _{\mathbf{D}_{-}}$	0.95	W			
Power Dissipation ^a	$T_A=25^{\circ}C$ $T_A=70^{\circ}C$		0.7	VV			
Operating Junction and Storage Temperature Range		T _J , T _{stg}	-55 to 150	°C			

THERMAL RESISTANCE RATINGS						
Parameter	Symbol	Maximum	Units			
Maximum lunction to Ambient ^a	t <= 5 sec	D	130	00///		
Maximum Junction-to-Ambient ^a	Steady-State	$\kappa_{ ext{THJA}}$	176	C/VV		

Notes

- a. Surface Mounted on 1" x 1" FR4 Board.
- b. Pulse width limited by maximum junction temperature

SPECIFICATIONS ($T_A = 25^\circ$	C UNLESS	OTHERWISE NOTED)					
Parameter	Cymbol	Test Conditions	Limits			Unit	
Farameter	Symbol	Symbol Test Conditions			Max		
Static							
Drain-Source Breakdown Voltage	V(BR)DSS	$V_{GS} = 0 \text{ V}, I_D = -250 \text{ uA}$	30			V	
Gate-Threshold Voltage	V _G S(th)	$V_{DS} = V_{GS}$, $I_D = -250 \text{ uA}$	1.00	1.85	3.1	1 °	
Gate-Body Leakage	Igss	$V_{DS} = 0 \text{ V}, V_{GS} = 20 \text{ V}$			±100	nA	
Zana Cata Valta as Dusin Comunt	T	$V_{DS} = 240 \text{ V}, V_{GS} = 0 \text{ V}$			1	η, Δ	
Zero Gate Voltage Drain Current	I _{DSS}	$V_{DS} = 24 \text{ V}, V_{GS} = 0 \text{ V}, T_{J} = 55^{\circ}\text{C}$			10	uA	
On-State Drain Current ^A	I _{D(on)}	$V_{DS} = 5 \text{ V}, V_{GS} = 10 \text{ V}$	10			Α	
D : G O D : A	450.00	$V_{GS} = 10 \text{ V}, I_D = -2.5 \text{ A}$		0.082	0.099	Ω	
Drain-Source On-Resistance ^A	fDS(on)	$V_{GS} = 4.5 \text{ V}, I_D = 2.0 \text{ A}$		0.113	0.142		
Forward Tranconductance ^A	gs	$V_{DS} = 5 \text{ V}, I_D = 2.5 \text{ A}$		3		S	
Diode Forward Voltage	V _{SD}	$I_S = -1.6 A, V_{GS} = 0 V$		-0.7	-1.2	V	
Dynamic ^b							
Total Gate Charge	Qg			2.3	3.3		
Gate-Source Charge	Qgs	$V_{DS} = 15 \text{ V}, V_{GS} = 5 \text{ V}, I_{D} = 2.5 \text{ A}$		0.7	1.0	пC	
Gate-Drain Charge	Qgd			0.9	1.4	1	
Switching							
Turn-On Delay Time	td(on)			6.5	13		
Rise Time	$t_{\rm r}$	$V_{DD} = 5 \text{ V}, \qquad \text{ID} = 2.5 \text{ A}, \qquad V_{GEN}$		11	19] "	
Turn-Off Delay Time	td(off)	$= 10 \text{ V}, \text{R}_{\text{G}} = 6 \Omega$		13	24	ns	
Fall-Time	tf			3	7		

Notes

- a. Pulse test: PW <= 300us duty cycle <= 2%.
- b. Guaranteed by design, not subject to production testing.

Typical Electrical Characteristics

Figure 1. On-Region Characteristics

Figure 3. On-Resistance Variation with Temperature

Figure 5. Transfer Characteristics

Figure 2. On-Resistance Variation with Drain Current and Gate Voltage

Figure 4. On-Resistance Variation with Gate to Source Voltage

Figure 6. Body Diode Forward Voltage Variation with Source Current and Temperature

Package Information

TSOP-6: 6LEAD

	MILLIMETERS INCHES			;		
Dim	Min	Nom	Max	Min	Nom	Max
Α	0.91	-	1.10	0.036	-	0.043
A ₁	0.01	_	0.10	0.0004	-	0.004
A ₂	0.84	_	1.00	0.033	0.038	0.039
b	0.30	0.32	0.45	0.012	0.013	0.018
С	0.10	0.15	0.20	0.004	0.006	0.008
D	2.95	3.05	3.10	0.116	0.120	0.122
E	2.70	2.85	2.98	0.106	0.112	0.117
E ₁	1.55	1.65	1.70	0.061	0.065	0.067
е	1.00 BSC			0.0394 BSC		
L	0.35	_	0.50	0.014	_	0.020
L ₁	0.60 Ref			0.024 Ref		
L ₂	0.25 BSC			0.010 BSC		
R	0.10	_	_	0.004	_	_
θ	0°	4°	8°	0°	4°	8°
θ_1		7° Nom		7° Nom		