P-Channel 60-V (D-S) MOSFET

These miniature surface mount MOSFETs utilize High Cell Density process. Low r_{DS(on)} assures minimal power loss and conserves energy, making this device ideal for use in power management circuitry. Typical applications are PWMDC-DC converters, power management in portable and battery-powered products such as computers, printers, battery charger, telecommunication power system, and telephones power system.

•	Low r _{DS(on)} Provides Higher Efficiency and
	Extends Battery Life

- Miniature SO-8 Surface Mount Package Saves Board Space
- High power and current handling capability
- Extended VGS range (±25) for battery pack applications

PRODUCT SUMMARY				
V _{DS} (V)	$r_{DS(on)}(\Omega)$	$I_{D}(A)$		
-60	0.310	2.1		
-00	$0.465 @ V_{GS} = -4.5V$	1.7		

ABSOLUTE MAXIMUM RATINGS ($T_A = 25$ °C UNLESS OTHERWISE NOTED)						
Parameter		Symbol	Maximum	Units		
Drain-Source Voltage			-60	V		
Gate-Source Voltage			±20	v		
Continuous Drain Current ^a	$T_A=25^{\circ}C$	Τ	2.1			
Continuous Drain Current	$T_A=25^{\circ}C$ $T_A=70^{\circ}C$	П	1.7	A		
Pulsed Drain Current ^b		I_{DM}	±15			
Continuous Source Current (Diode Conduction) ^a		I_S	-1.7	A		
D Dia in	$T_A=25^{\circ}C$	D_{-}	2.0	W		
Power Dissipation ^a	$T_A=25^{\circ}C$ $T_A=70^{\circ}C$	LD	1.3			
Operating Junction and Storage Temperature Range		T_{J}, T_{stg}	-55 to 150	°C		

THERMAL RESISTANCE RATINGS						
Parameter		Symbol	Maximum	Units		
N	t <= 5 sec	$R_{ heta JA}$	62.5	°C/W		
Maximum Junction-to-Ambient ^a			110	°C/W		

Notes

- a. Surface Mounted on 1" x 1" FR4 Board.
- b. Pulse width limited by maximum junction temperature

Dougrama	Carrah a l	Test Conditions	Limits			T.
Parameter	Symbol		Min	Тур	Max	Unit
Static						
Gate-Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}$, $I_D = -250 \text{ uA}$	-1			
Gate-Body Leakage	Igss	$V_{DS} = 0 \ V, \ V_{GS} = \pm 20 \ V$			±100	nA
Zero Gate Voltage Drain Current	Ides	$V_{DS} = -48 \text{ V}, V_{GS} = 0 \text{ V}$			-1	uA
Zero Gate voltage Diani Current	IDSS	$V_{DS} = -48 \text{ V}, V_{GS} = 0 \text{ V}, T_J = 55^{\circ}\text{C}$			-10	
On-State Drain Current ^A	I _{D(on)}	$V_{DS} = -5 \text{ V}, V_{GS} = -10 \text{ V}$	-20			A
Drain-Source On-Resistance ^A		$V_{GS} = -10 \text{ V}, I_D = -2.1 \text{ A}$			310	mΩ
Drain-Source On-Resistance	fDS(on)	$V_{GS} = -4.5 \text{ V}, I_D = -1.7 \text{ A}$			465	
Forward Tranconductance ^A	gs	$V_{DS} = -15 \text{ V}, I_D = -2.1 \text{ A}$		8		S
Diode Forward Voltage	V _{SD}	$I_S = -2.5 \text{ A}, V_{GS} = 0 \text{ V}$			-1.2	V
Dynamic ^b						
Total Gate Charge	Qg	$V_{DS} = -30 \text{ V}, V_{GS} = -4.5 \text{ V},$ $I_{D} = -2.1 \text{ A}$		18		
Gate-Source Charge	Q_{gs}			5		nC
Gate-Drain Charge	Q_{gd}			2		
Turn-On Delay Time	t _{d(on)}			8		
Rise Time	$t_{ m r}$	$V_{DD} = -30 \text{ V}, R_L = 30 \Omega, ID = -1 \text{ A}, VGEN = -10 \text{ V}, RG = 6\Omega$		10		nS
Turn-Off Delay Time	t _{d(off)}			35		
Fall-Time	t_{f}			12		

Notes

- a. Pulse test: PW <= 300us duty cycle <= 2%.
- b. Guaranteed by design, not subject to production testing.