N-Channel 30V (D-S) MOSFET

These miniature surface mount MOSFETs utilize High Cell Density process. Low $r_{DS(on)}$ assures minimal power loss and conserves energy, making this device ideal for use in power management circuitry. Typical applications are power switch, power management in portable and battery-powered products such as computers, printers, PCMCIA cards, cellular and cordless telephones.

•	Low $r_{DS(on)}$ Provides Higher Efficiency and
	Extends Battery Life

- Low Gate Charge
- Fast Switch
- Miniature TSOP-6 Surface Mount Package Saves Board Space

PRODUCT SUMMARY				
V _{DS} (V)	$r_{DS(on)}(\Omega)$	I _D (A)		
30	$0.044 @ V_{GS} = 10 V$	5.1		
30	$0.064 @ V_{GS} = 4.5V$	4.5		

ABSOLUTE MAXIMUM RATINGS ($T_A = 25$ °C UNLESS OTHERWISE NOTED)					
Parameter			Maximum	Units	
Drain-Source Voltage			30	V	
Gate-Source Voltage			±20	V	
Continuous Drain Current ^a	$T_A=25^{\circ}C$	J.,	5.5		
Continuous Dram Current	$T_A=25^{\circ}C$ $T_A=70^{\circ}C$	ъ	4.4	A	
Pulsed Drain Current ^b		I_{DM}	±20		
Continuous Source Current (Diode Conduction) ^a			1.3	A	
D. D. a. a. a. a.	$T_A=25^{\circ}C$	\mathbf{D}_{-}	2.0	W	
Power Dissipation ^a	$T_A=25^{\circ}C$ $T_A=70^{\circ}C$	LD	1.3	l vv	
Operating Junction and Storage Temperature Range			-55 to 150	°C	

THERMAL RESISTANCE RATINGS						
Parameter	Symbol	Maximum	Units			
No. 1	t <= 5 sec	D	85	00/11/		
Maximum Junction-to-Ambient ^a	Steady-State	R_{THJA}	62.5	C/W		

Notes

- a. Surface Mounted on 1" x 1" FR4 Board.
- b. Pulse width limited by maximum junction temperature

SPECIFICATIONS (T _A = 25°	C UNLESS	OTHERWISE NOTED)				
Parameter	Symbol	Test Conditions	Limits			Unit
r ar ameter	Symbol	Test Conditions	Min	Тур	Max	Umi
Switch Off Characteristics						
Gate-Body Leakage	I_{GSS}	$V_{DS} = 0 \ V, \ V_{GS} = \pm 20 \ V$			±100	nA
Zero Gate Voltage Drain Current	I_{DSS}	$V_{DS} = 24 \text{ V}, V_{GS} = 0 \text{ V}$			1	uA
Zero Gate Voltage Drain Current	¹ DSS	$V_{DS} = 24 \text{ V}, V_{GS} = 0 \text{ V}, T_{J} = 55^{\circ}\text{C}$			10	
Switch On Characteristics						
Gate-Threshold Voltage	$V_{GS(th)}$	$V_{DS} = V_{GS}, I_{D} = 250 \text{ uA}$	1.0			V
		$V_{GS} = 10 \text{ V}, I_D = 5.1 \text{ A}$			44	
Drain-Source On-Resistance ^A	$r_{DS(on)}$	$V_{GS} = 10 \text{ V}, I_D = 5.1 \text{ A } T_J = 55^{\circ}\text{C}$			49	mΩ
		$V_{GS} = 4.5 \text{ V}, I_D = 4.5 \text{ A}$			64	
Forward Tranconductance ^A	g_{fs}	$V_{DS} = 10 \text{ V}, I_D = 5.1 \text{ A}$		45		S
On-State Drain Current ^A	I _{D(on)}	$V_{DS} = 5 \text{ V}, V_{GS} = 10 \text{ V}$	20			Α
Diode Forward Voltage	V_{SD}	$I_S = 1.3 \text{ A}, V_{GS} = 0 \text{ V}$		0.75		V
Dynamic ^b	-					
Total Gate Charge	Q_{g}	$V_{DS} = 15 \text{ V}, V_{GS} = 5 \text{ V}, I_{D} = 5.1 \text{ A}$ $R_{L} = 6 \Omega$		4.0		пС
Gate-Source Charge	Q_{gs}			1.1		
Gate-Drain Charge	Q_{gd}			1.4		
Turn-On Delay Time	t _{d(on)}			6		
Rise Time	t _r	$V_{DS} = 15 \text{ V}, R_L = 6 \Omega, I_D = 1 \text{ A},$ $V_{GEN} = 10 \text{ V}$		10		ns
Turn-Off Delay Time	$t_{d(off)}$			18		
Fall-Time	t_{f}			5		

Notes

- a. Pulse test: PW <= 300us duty cycle <= 2%.
- b. Guaranteed by design, not subject to production testing.