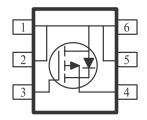
P-Channel 30V (D-S) MOSFET


These miniature surface mount MOSFETs utilize High Cell Density process. Low $r_{DS(on)}$ assures minimal power loss and conserves energy, making this device ideal for use in power management circuitry. Typical applications are power switch, power management in portable and battery-powered products such as computers, printers, PCMCIA cards, cellular and cordless telephones.

•	Low r _{DS(on)} Provides Higher Efficiency and
	Extends Battery Life

- Low Gate Charge
- Fast Switch
- Miniature TSOP-6 Surface Mount Package Saves Board Space

PRODUCT SUMMARY			
V _{DS} (V)	$r_{DS(on)}(\Omega)$	$I_{D}(A)$	
-30	$0.112 @ V_{GS} = 10 V$	3.4	
-30	0.172	2.7	

ABSOLUTE MAXIMUM RATINGS (T _A = 25 °C UNLESS OTHERWISE NOTED)					
Parameter		Symbol	Maximum	Units	
Drain-Source Voltage			-30	V	
Gate-Source Voltage			±20	V	
Continuous Drain Current ^a	$T_A=25^{\circ}C$] _T	3.4		
Continuous Drain Current	$T_{A}=25^{\circ}C$ $T_{A}=70^{\circ}C$	П	2.6	A	
Pulsed Drain Current ^b		I_{DM}	±20		
Continuous Source Current (Diode Conduction) ^a		I_S	1.7	A	
D Dia in	$T_A=25^{\circ}C$	$\Big]_{\mathbf{D}_{-}}$	2.0	$_{ m W}$	
Power Dissipation ^a	$T_{A}=25^{\circ}C$ $T_{A}=70^{\circ}C$	I D	1.3	_ **	
Operating Junction and Storage Temperature Range	· · · · · ·	T _J , T _{stg}	-55 to 150	°C	

THERMAL RESISTANCE RATINGS							
Parameter		Symbol	Maximum	Units			
M . I	t <= 5 sec	D	62.5	00/11/			
Maximum Junction-to-Ambient ^a	Steady-State	R_{THJA}	110	L/W			

Notes

- a. Surface Mounted on 1" x 1" FR4 Board.
- b. Pulse width limited by maximum junction temperature

SPECIFICATIONS ($T_A = 2$	5°C UNLES	SS OTHERWISE NOTED)					
Parameter	Symbol	T4 C44	Limits			TIm:4	
rarameter	Symbol	Test Conditions	Min	Тур	Max	Unit	
Static							
Gate-Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}, I_D = 250 \text{ uA}$	1.0			V	
Gate-Body Leakage	Igss	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 20 \text{ V}$			±100	nA	
Zero Gate Voltage Drain Current	Inss	$V_{DS} = -24 \text{ V}, V_{GS} = 0 \text{ V}$			1	uA	
	IDSS	$V_{DS} = -24 \text{ V}, V_{GS} = 0 \text{ V}, T_J = 55^{\circ}\text{C}$			50	uA	
On-State Drain Current ^A	I _{D(on)}	$V_{DS} = 5 \text{ V}, V_{GS} = 10 \text{ V}$	10			Α	
Drain-Source On-Resistance ^A		$V_{GS} = 10 \text{ V}, I_D = 3.4 \text{ A}$			112	mΩ	
	IDS(on)	$V_{GS} = 4.5 \text{ V}, I_D = 2.7 \text{ A}$			172		
Forward Tranconductance ^A	gfs	$V_{\rm DS} = 4.5 \ V, I_{\rm D} = 3.4 \ {\rm A}$		6		S	
Diode Forward Voltage	V_{SD}	$I_S = 0.75 \text{ A}, V_{GS} = 0 \text{ V}$			1.2	V	
Dynamic ^b							
Total Gate Charge	Qg			4.5			
Gate-Source Charge	Q_{gs}	$V_{DS} = 30 \text{ V}, V_{GS} = 5 \text{ V}, I_D = 3.4 \text{ A}$		1.4		nC	
Gate-Drain Charge	Q_{gd}			2.4			
Turn-On Delay Time	t _{d(on)}			9			
Rise Time	tr	$V_{DD} = 30 \text{ V}, R_L = 30 \Omega, I_D = 1 \text{ A},$		12]	
Turn-Off Delay Time	td(off)	$V_{\rm GEN} = 10 \ { m V}$		25		ns	
Fall-Time	tf			14]	

Notes

- a. Pulse test: PW <= 300us duty cycle <= 2%.
- b. Guaranteed by design, not subject to production testing.