N-Channel 30-V (D-S) MOSFET

These miniature surface mount MOSFETs utilize a high cell density trench process to provide low $r_{DS(on)}$ and to ensure minimal power loss and heat dissipation. Typical applications are DC-DC converters and power management in portable and battery-powered products such as computers, printers, PCMCIA cards, cellular and cordless telephones.

- Low $r_{DS(on)}$ provides higher efficiency and extends battery life
- Low thermal impedance copper leadframe SOT-23 saves board space
- Fast switching speed
- High performance trench technology

PRODUCT SUMMARY			
V _{DS} (V)	$r_{\mathrm{DS(on)}}(\Omega)$ $I_{\mathrm{D}}(A)$		
30	$0.085 @ V_{GS} = 10V$	2.5	
	$0.125 @ V_{GS} = 4.5V$	1.7	

ABSOLUTE MAXIMUM RATINGS (T _A = 25 °C UNLESS OTHERWISE NOTED)					
Parameter			Maximum	Units	
Drain-Source Voltage			30 V		
Gate-Source Voltage			±20	·	
Constitution During Comments	$T_A=25^{\circ}C$	T	2.5		
Continuous Drain Current ^a	$T_A=25^{\circ}C$ $T_A=70^{\circ}C$	¹ D	2	A	
Pulsed Drain Current ^b	I_{DM}	10			
Continuous Source Current (Diode Conduction) ^a	I_S	0.46	A		
Decree Discipation ⁸	$T_A=25^{\circ}C$	D	1.25	W	
Power Dissipation ^a	$T_A=25^{\circ}C$ $T_A=70^{\circ}C$	I ₁ D	0.8	VV	
Operating Junction and Storage Temperature Range			-55 to 150	°C	

THERMAL RESISTANCE RATINGS					
Parameter	Symbol	Maximum	Units		
M . I	t <= 5 sec	D	150	°C/W	
Maximum Junction-to-Ambient ^a	Steady-State	R_{THJA}	200		

Notes

- a. Surface Mounted on 1" x 1" FR4 Board.
- b. Pulse width limited by maximum junction temperature

SPECIFICATIONS (T _A = 25°C UNLESS OTHERWISE NOTED)						
Parameter	Symbol Tost Conditions	Limits			Unit	
Farameter	Symbol	Symbol Test Conditions		Тур	Max	Umt
Static						
Gate-Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}, I_{D} = 250 \text{ uA}$	1.0	1.5	3	V
Gate-Body Leakage	I_{GSS}	$V_{DS} = 0 \text{ V}, V_{GS} = 8 \text{ V}$		4	100	nA
Zero Gate Voltage Drain Current	$I_{ m DSS}$	$V_{DS} = 16 \text{ V}, V_{GS} = 0 \text{ V}$		7	1	uA
Zero Gate Voltage Brain Current	*D88	$V_{DS} = 20 \text{ V}, V_{GS} = 0 \text{ V}, T_{J} = 55^{\circ}\text{C}$			10	
On-State Drain Current ^A	I _{D(on)}	$V_{DS} = 5 \text{ V}, V_{GS} = 4.5 \text{ V}$	6			A
Drain-Source On-Resistance ^A		$V_{GS} = 10 \text{ V}, I_D = 2.5 \text{ A}$		62	85	mΩ
Drain-Source On-Resistance	r _{DS(on)}	$V_{GS} = 4.5 \text{ V}, I_D = 1.7 \text{ A}$		102	125	
Forward Tranconductance ^A	g_{fs}	$V_{DS} = 5 \text{ V}, I_{D} = 3.0 \text{ A}$		3.5		S
Diode Forward Voltage	V_{SD}	$I_S = 0.46 \text{ A}, V_{GS} = 0 \text{ V}$		0.65		V
Dynamic ^b	•			-	-	
Total Gate Charge	Q_{g}	$V_{DS} = 10 \text{ V}, V_{GS} = 4.5 \text{ V},$		3.5	7	
Gate-Source Charge	Q_{gs}	$I_{DS} = 10 \text{ V}, V_{GS} = 4.3 \text{ V},$ $I_{D} = 2.5 \text{ A}$		0.8	2	nC
Gate-Drain Charge	Q_{gd}			1.0	2	
Input Capacitance	C _{iss}	V = 15 V V = 0 V		720	1500	
Output Capacitance C _{oss}		$V_{DS} = 15 \text{ V}, V_{GS} = 0 \text{ V},$ f = 1MHz		165	400	pF
Reverse Transfer Capacitance	C_{rss}	I — IIVIFIZ		60	200	
Turn-On Delay Time	$t_{d(on)}$			10	20	
Rise Time	$t_{\rm r}$	$V_{DD} = 10 \text{ V}, \qquad I_D = 1 \text{ A}, $ $R_G = 6 \Omega, \qquad V_{GEN} = 4.5 \text{ V}$		13	30	ns
Turn-Off Delay Time	$t_{d(off)}$			14	30	
Fall-Time	t_{f}			4	20	

Notes

- a. Pulse test: PW <= 300us duty cycle <= 2%.
- b. Guaranteed by design, not subject to production testing.

Package Information

DIM.	MILLIMETERS			
יהודת	MIN	NDM	MAX	
Α	0.935	0.95	1.10	
A1	0.01		0.10	
A2	0.85	0.90	0.925	
Ь	0.30	0.40	0.50	
С	0.10	0.15	0.25	
D	2.70	2.90	3.10	
Ε	2.60	2.80	3.00	
E1	1.40	1.60	1.80	
6	0.95 BSC			
el	1.90 BSC			
L	0.30	0.40	0.60	
L1	0.60REF			
L2	0.25BSC			
R	0.10			
θ	Û.	4*	8,	
01	7*N□M			

