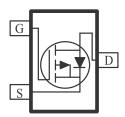
P - Channel Logic Level MOSFET


These miniature surface mount MOSFETs utilize High Cell Density process. Low $r_{DS(on)}$ assures minimal power loss and conserves energy, making this device ideal for use in power management circuitry. Typical applications are voltage control small signal switch, power management in portable and battery-powered products such as computer portable electronics and other battery power application.

•	Low $r_{DS(on)}$ Provides Higher Efficiency and
	Extends Battery Life

- Fast Switch
- Low Gate Charge
- Miniature SOT-23 Surface Mount Package Saves Board Space

PRODUCT SUMMARY				
V _{DS} (V)	$\mathbf{r}_{\mathrm{DS(on)}}\left(\Omega\right)$	$I_{D}(A)$		
-30	$0.20 @ V_{GS} = -10 V$	-2.1		
-30	$0.30 @ V_{GS} = -4.5V$	-1.7		

ABSOLUTE MAXIMUM RATINGS (T _A = 25 °C UNLESS OTHERWISE NOTED)					
Parameter		Symbol	Maximum	Units	
Drain-Source Voltage		$ m V_{DS}$	-30	V	
Gate-Source Voltage		V_{GS}	±20	V	
Continuous Drain Current ^a	$T_A=25^{\circ}C$	1-	-2.1		
Continuous Drain Current	$T_A=25^{\circ}C$ $T_A=70^{\circ}C$	ъ	-1.7	A	
Pulsed Drain Current ^b	I_{DM}	±10			
Continuous Source Current (Diode Conduction) ^a		I_S	-0.4	A	
D District a	$T_A=25^{\circ}C$	\mathbf{D}_{-}	1.25	W	
Power Dissipation ^a	$T_A=25^{\circ}C$ $T_A=70^{\circ}C$	1 D	0.8	**	
Operating Junction and Storage Temperature Range		T_J, T_{stg}	-55 to 150	°C	

THERMAL RESISTANCE RATINGS				
Parameter		Symbol	Maximum	Units
No. 1	t <= 5 sec	D	250	00/337
Maximum Junction-to-Ambient ^a	Steady-State	R_{THJA}	285	L/W

Notes

- a. Surface Mounted on 1" x 1" FR4 Board.
- b. Pulse width limited by maximum junction temperature

Davamatan	Symbol	T C	Limits			T I wa 24
Parameter		Test Conditions	Min	Тур	Max	Unit
Static						
Zero Gate Voltage Drain Current	Т	$V_{DS} = -24 \text{ V}, V_{GS} = 0 \text{ V}$			-1	μА
Zero Gate voltage Dialii Current	Idss	$V_{DS} = -24 \text{ V}, V_{GS} = 0 \text{ V}, T_{J} = 55^{\circ}\text{C}$			-10	
Gate-Body Leakage	Igss	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 20 \text{ V}$			±100	nA
Gate-Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}, I_D = -250 \text{ uA}$	-1.30			V
On-State Drain Current ^A	I _{D(on)}	$V_{DS} = -5 \text{ V}, V_{GS} = -4.5 \text{ V}$	-3			A
5 A		$V_{GS} = -10 \text{ V}, I_D = -2.1 \text{ A}$			0.20	$\dashv \Omega$
Drain-Source On-Resistance ^A	TDS(on)	$V_{GS} = -4.5 \text{ V}, I_D = -1.7 \text{ A}$			0.30	
Forward Tranconductance ^A	gs	$V_{DS} = -5 \text{ V}, I_D = -2.1 \text{ A}$		2		S
Diode Forward Voltage	V _{SD}	$I_S = -0.4 \text{ A}, V_{GS} = 0 \text{ V}$		-0.70	-1.2	V
Dynamic ^b						
Total Gate Charge	Qg	Vos = 10 V Vos = 5 V		3.4		
Gate-Source Charge	Qgs	$V_{DS} = -10 \text{ V}, V_{GS} = -5 \text{ V},$ $I_{D} = -2.1 \text{ A}$		0.8		nC
Gate-Drain Charge	Qgd	1D – -2.1 A		1.5		
Turn-On Delay Time	td(on)			8		
Rise Time	$t_{\rm r}$	$V_{DS} = -10 \text{ V}, I_D = -1.1 \text{ A},$		18		ns
Turn-Off Delay Time	td(off)	$R_G = 50 \Omega$, $V_{GEN} = -10 V$		52		1115
Fall-Time	t_{f}			39		

Notes

- a. Pulse test: $PW \le 300us duty cycle \le 2\%$.
- b. Guaranteed by design, not subject to production testing.

Typical Electrical Characteristics

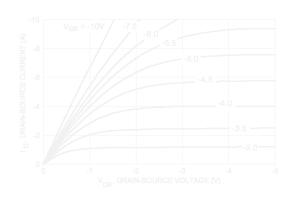


Figure 1. On-Region Characteristics

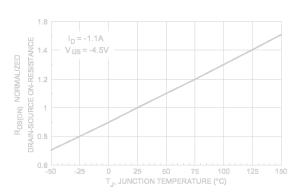


Figure 3. On-Resistance Variation with Temperature

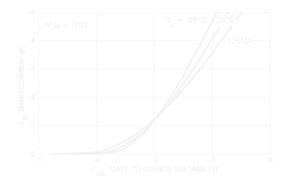


Figure 5. Transfer Characteristics

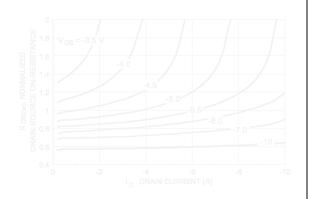


Figure 2. On-Resistance Variation with Drain Current and Gate Voltage

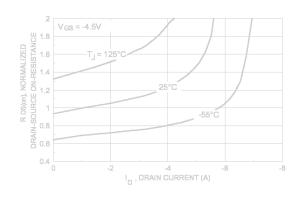


Figure 4. On-Resistance Variation with Gate to Source Voltage

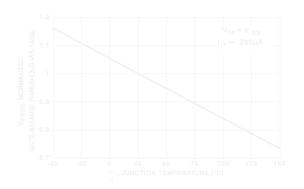


Figure 6. Body Diode Forward Voltage Variation with Source Current and Temperature

Typical Electrical Characteristics

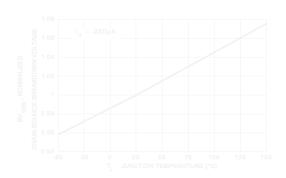


Figure 7. Breakdown Voltage Variation with Temperature.

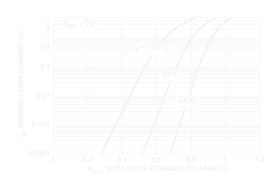


Figure 8. Body Diode Forward Voltage Variation with

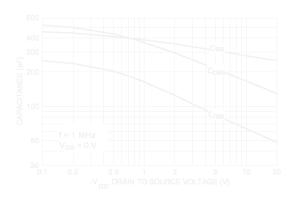


Figure 9. Capacitance Characteristic

Figure 10. Gate Charge Characteristic

Normalized Thermal Transient Impedance, Junction to Ambient

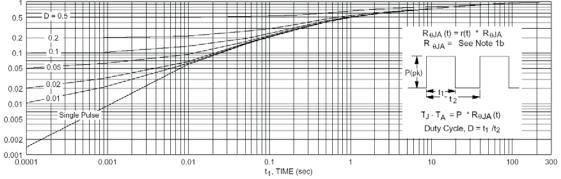


Figure 11. Transient Thermal Response Curve

Typical Electrical Characteristics

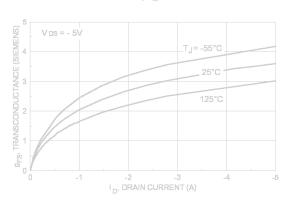
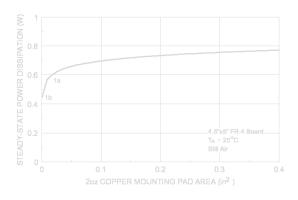
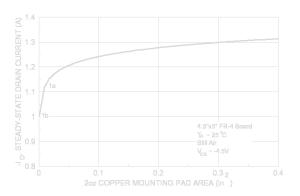
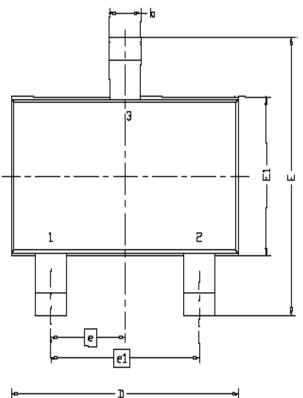
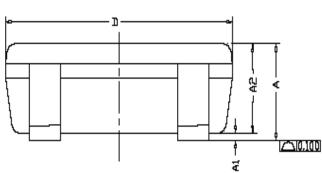
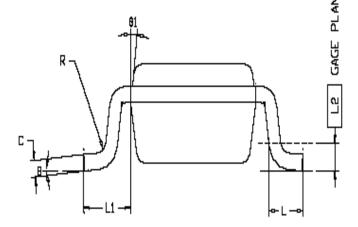



Figure 12. Transconductance Variation With Current & Temperature

Figure 13. Maximum Safe Operation Area


Figure 14. SOT-3 Maximum Steady-State Variation Power Dissipation versus Copper Pad Area


Figure 15. Maximum State-State Drain Current Versus Copper Pad Area

Package Information

DIM.	MILLIMETERS			
יהודת	MIN	NDM	MAX	
Α	0.935	0.95	1.10	
A1	0.01		0.10	
A2	0.85	0.90	0.925	
Ь	0.30	0.40	0.50	
С	0.10	0.15	0.25	
D	2.70	2.90	3.10	
Ε	2.60	2.80	3.00	
E1	1.40	1.60	1.80	
6	0.95 BSC			
el	1.90 BSC			
L	0.30	0.40	0.60	
L1	0.60REF			
L2	0,25BSC			
R	0.10			
θ	Ů,	4*	ē	
01	7*N□M			

