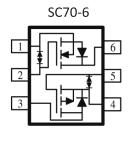
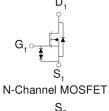


N & P-Channel 80-V (D-S) MOSFET

Key Features:


- Low r_{DS(on)} trench technology
- Low thermal impedance
- · Fast switching speed


Typical Applications:

- LED Inverter Circuits
- DC/DC Conversion Circuits
- Motor drives

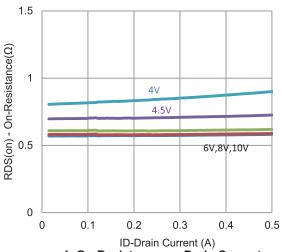
PRODUCT SUMMARY					
V _{DS} (V)	$r_{DS(on)}(m\Omega)$	I⊳(A)			
80	740 @ V _{GS} = 10V	0.52			
	810 @ V _{GS} = 4.5V	0.50			
-80	3300 @ V _{GS} = -10V	-0.25			
	3400 @ V _{GS} = -4.5V	-0.24			

P-Channel MOSFET

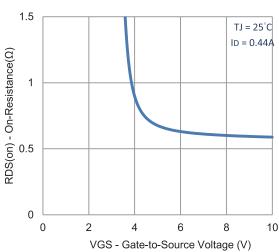
ABSOLUTE MAXIMUM RATINGS (T _A = 25°C UNLESS OTHERWISE NOTED)							
Parameter		Symbol	Nch Limit	Pch Limit	Units		
Drain-Source Voltage			80	-80	V		
Gate-Source Voltage		V_{GS}	±20	±20	V		
Continuo Desir Commental	T _A =25°C	ı	0.52	-0.25			
Continuous Drain Current ^a	T _A =70°C	0.43	-0.21	Α			
Pulsed Drain Current ^b	I _{DM}	2	-2				
Continuous Source Current (Diode Conduction) a		I _S	0.4	-0.4	Α		
D Dii	T _A =25°C	P _D	0.3	0.3	W		
Power Dissipation ^a	T _A =70°C		0.21	0.21	V V		
Operating Junction and Storage Temperature Range		T _J , T _{stg}	-55 to 150		°C		

THERMAL RESISTANCE RATINGS							
Parameter			Maximum	Units			
Maximum Junction-to-Ambient ^a	t <= 10 sec	$R_{\theta JA}$	415	°C/W			
iviaximum Junction-to-Ambient	Steady State	I V OJA	460	C/VV			

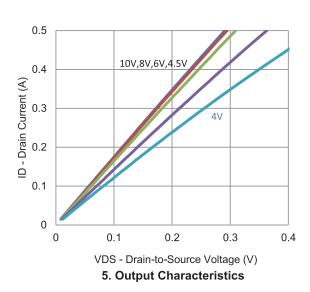
Notes

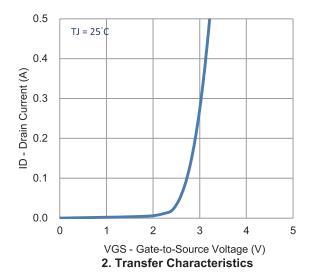

- a. Surface Mounted on 1" x 1" FR4 Board.
- b. Pulse width limited by maximum junction temperature

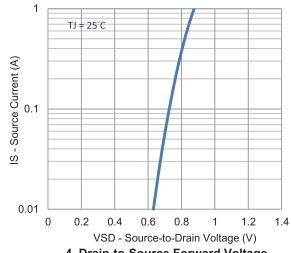
MI1580CE

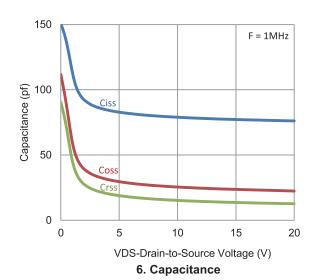

Electrical Characteristics

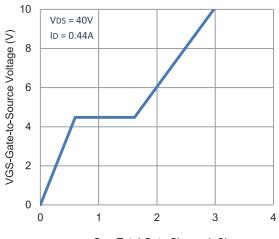
Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit	
Static							
Gate-Source Threshold Voltage	1,,	$V_{DS} = V_{GS}, I_{D} = 250 \text{ uA}$ (N-ch)	1			V	
	$V_{GS(th)}$	$V_{DS} = V_{GS}$, $I_{D} = -250 \text{ uA}$ (P-ch)	-1			V	
Gate-Body Leakage	I_{GSS}	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 20 \text{ V}$			±10	uA	
7 0-4- 1/-14 D	Ι.	$V_{DS} = 64 \text{ V}, V_{GS} = 0 \text{ V}$ (N-ch)			1	uA	
Zero Gate Voltage Drain Current	DSS	$V_{DS} = -64 \text{ V}, V_{GS} = 0 \text{ V}$ (P-ch)			-1		
On-State Drain Current ^a	I _{D(on)}	$V_{DS} = 5 \text{ V}, V_{GS} = 10 \text{ V}$ (N-ch)	0.8			Α	
On-State Brain Current	'D(on)	$V_{DS} = -5 \text{ V}, V_{GS} = -10 \text{ V}$ (P-ch)	-0.4			Α	
		$V_{GS} = 10 \text{ V}, I_D = 0.44 \text{ A}$ (N-ch)			740	mΩ	
Drain-Source On-Resistance ^a	r _{DS(on)}	$V_{GS} = 4.5 \text{ V}, I_D = 0.35 \text{ A}$ (N-ch)			810	11177	
Diani-Source On-Inesistance	108(on)	$V_{GS} = -10 \text{ V}, I_D = -0.2 \text{ A}$ (P-ch)			3300	mΩ	
		$V_{GS} = -4.5 \text{ V}, I_D = -0.16 \text{ A (P-ch)}$			3400	11122	
Forward Transconductance ^a	g _{fs}	$V_{DS} = 15 \text{ V}, I_{D} = 0.44 \text{ A}$ (N-ch)		9		S	
Torward Transconductance	91s	$V_{DS} = -15 \text{ V}, I_{D} = -0.2 \text{ A}$ (P-ch)		7		S	
Diode Forward Voltage ^a	V _{SD}	$I_S = 0.2 \text{ A}, V_{GS} = 0 \text{ V}$ (N-ch)		0.76		V	
Diode i diward voltage	• 50	$I_S = -0.2 \text{ A}, V_{GS} = 0 \text{ V}$ (P-ch)		-0.82		V	
	_	Dynamic ^b					
Total Gate Charge	Q_g	N - Channel		1.6			
Gate-Source Charge	Q_gs	$V_{DS} = 40 \text{ V}, V_{GS} = 4.5 \text{ V},$		0.6		nC	
Gate-Drain Charge	Q_{gd}	I _D = 0.44 A		1.0			
Turn-On Delay Time	t _{d(on)}	N - Channel		3			
Rise Time	t _r	$V_{DS} = 40 \text{ V}, R_L = 91 \Omega, I_D = 0.44 \text{ A},$		5		ns	
Turn-Off Delay Time	$t_{d(off)}$	$V_{GEN} = 10 \text{ V}, R_{GEN} = 6 \Omega$		12			
Fall Time	t _f	JEN / JEN		4			
Input Capacitance	C _{iss}	N - Channel		77			
Output Capacitance	C _{oss}	$V_{DS} = 15 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ Mhz}$		24		pF	
Reverse Transfer Capacitance	C_{rss}			14			
Total Gate Charge	Q_g	P - Channel		2.1			
Gate-Source Charge	Q_gs	$V_{DS} = -40 \text{ V}, V_{GS} = -4.5 \text{ V},$		0.7		nC	
Gate-Drain Charge	Q_{gd}	I _D = -0.2 A		1.0			
Turn-On Delay Time	$t_{d(on)}$	P - Channel		4		ns	
Rise Time	t _r	$V_{DS} = -40 \text{ V}, R_L = 200 \Omega, I_D = -0.2 \text{ A},$		6			
Turn-Off Delay Time	$t_{d(off)}$	$V_{GEN} = -10 \text{ V}, R_{GEN} = 6 \Omega$		9			
Fall Time	t _f	OLIV / OLIV		3			
Input Capacitance	C _{iss}	P - Channel		100			
Output Capacitance	C _{oss}	$V_{DS} = -15 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ Mhz}$		24		pF	
Reverse Transfer Capacitance C _{rss}			13				

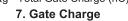

Typical Electrical Characteristics - N-channel

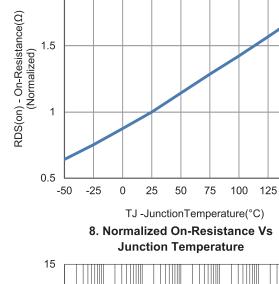


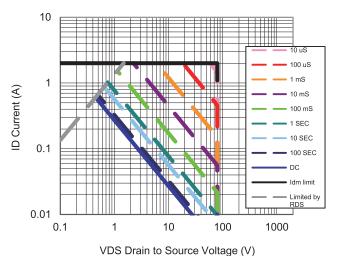


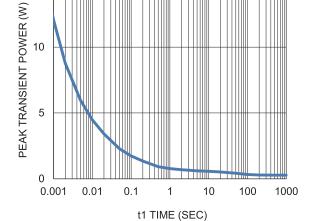

3. On-Resistance vs. Gate-to-Source Voltage



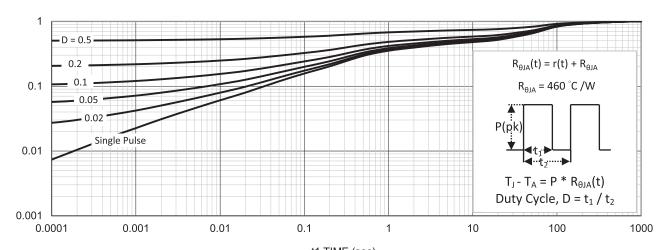

4. Drain-to-Source Forward Voltage



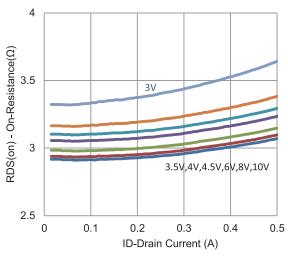

Qg - Total Gate Charge (nC)

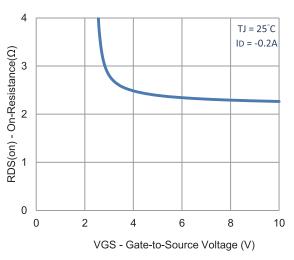


8. Normalized On-Resistance Vs

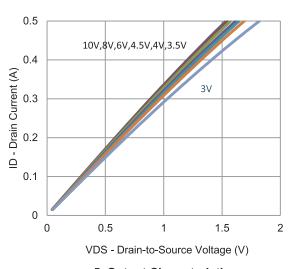

150

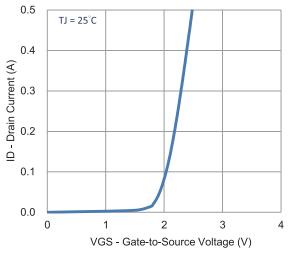
9. Safe Operating Area

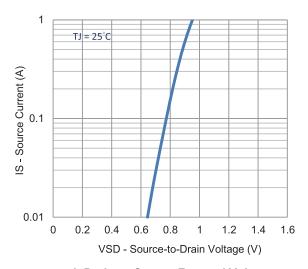

10. Single Pulse Maximum Power Dissipation

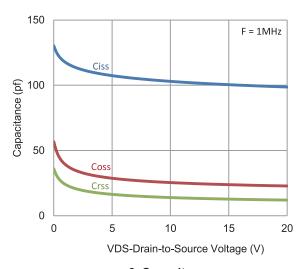

t1 TIME (sec)

11. Normalized Thermal Transient Junction to Ambient

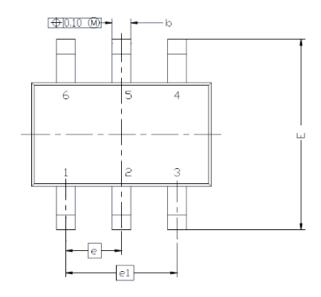

Typical Electrical Characteristics - P-channel

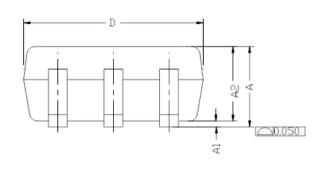

1. On-Resistance vs. Drain Current

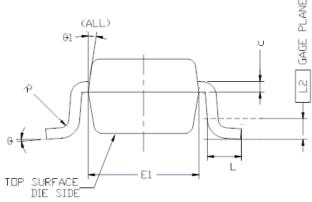

3. On-Resistance vs. Gate-to-Source Voltage


5. Output Characteristics

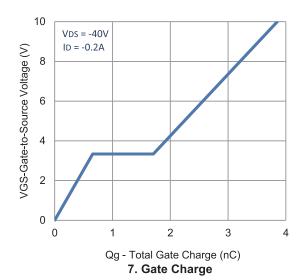
2. Transfer Characteristics

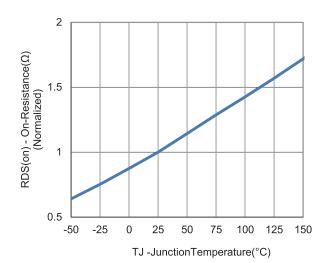

4. Drain-to-Source Forward Voltage

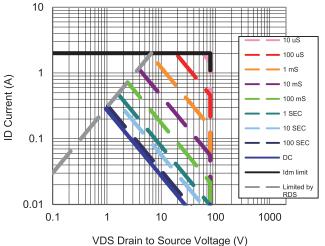

6. Capacitance

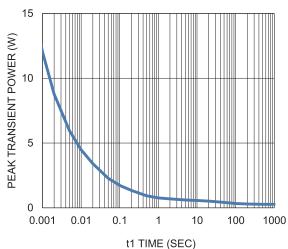

MI1580CE

Package Information

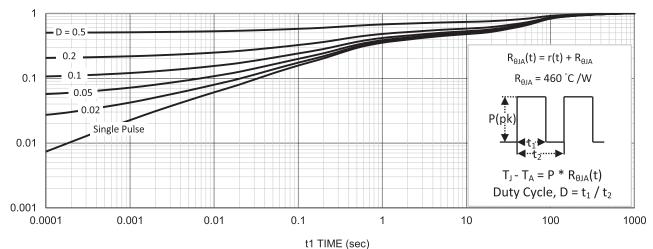



DIM.	MILLIMETERS			INCHES				
DIP.	MIN	NDM	MAX	MIN	NDM	MAX		
Α	0.900	0.95	1.10	0.035	0.037	0.043		
A1	0.00		0.10	0.000		0.004		
A2	0.70	0.90	1.00	0.028	0.035	0.039		
b	0.15	0.22	0.30	0.006	0.016	0.012		
_	0.08	0.127	0.20	0.003	0.005	0.008		
D	í á	2.10 BSC			0.083 BSC			
E	2.30 BSC			0.091 BSC				
E1	1.30 BSC			0.051 BSC				
е	0.65 BSC			0.026 BSC				
e1	1.30 BSC			0.051 BSC				
L	0.26	0.40	0.46	0.010	0.015	0.018		
L2	0.254BSC			0.010BSC				
R	0.10			0.004				
0	0?	4?	8?	0?	4?	8?		
91	7?NOM			7?NOM				





15


8. Normalized On-Resistance Vs **Junction Temperature**

9. Safe Operating Area

10. Single Pulse Maximum Power Dissipation

11. Normalized Thermal Transient Junction to Ambient