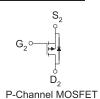

N & P-Channel 30-V (D-S) MOSFET

These miniature surface mount MOSFETs utilize High Cell Density process. Low $r_{DS(on)}$ assures minimal power loss and conserves energy, making this device ideal for use in power management circuitry. Typical applications are DC-DC converters, power management in portable and battery-powered products such as computers, printers, PCMCIA cards, cellular and cordless telephones.


•	Low r _{DS(or}	n) Provides	Higher	Efficiency
---	------------------------	-------------	--------	------------

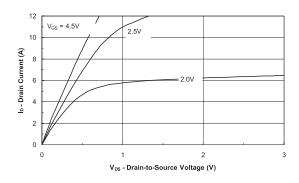
- and Extends Battery Life
- Miniature TSOP-6 Surface Mount Package Saves Board Space

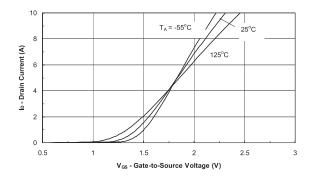
PRODUCT SUMMARY							
V _{DS} (V)	$r_{DS(on)}(\Omega)$	$I_{D}(A)$					
	$0.058 @ V_{GS} = 4.5V$	3.7					
23	$0.082 @ V_{GS} = 2.5V$	3.1					
	$0.160 @ V_{GS} = 1.8V$	2.2					
	$0.112 @ V_{GS} = -4.5V$	-2.7					
-23	$0.172 @ V_{GS} = -2.5V$	-2.2					
	$0.210 @ V_{GS} = -1.8V$	-2.0					

ABSOLUTE MAXIMUM RATINGS (T _A = 25 °C UNLESS OTHERWISE NOTED)								
Parameter	Symbol	N-Channel	P-Channel	Units				
Drain-Source Voltage			23	-23	V			
Gate-Source Voltage	V_{GS}	±12	±12	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				
	$T_A=25^{\circ}C$	т	3.7	-2.7	A			
Continuous Drain Current ^a	$T_{A}=25^{\circ}C$ $T_{A}=70^{\circ}C$	$_{ m 1D}$	2.9	-2.1				
Pulsed Drain Current ^b	I_{DM}	8	-8					
Continuous Source Current (Diode Conduct	I_S	1.05	-1.05	A				
D a	$T_A=25^{\circ}C$	D	1.15		W			
Power Dissipation ^a	$T_{A}=25^{\circ}C$ $T_{A}=70^{\circ}C$	ΓD	0.7					
Operating Junction and Storage Temperature Range		$T_{\rm J},T_{\rm stg}$	-55 to 150		°C			

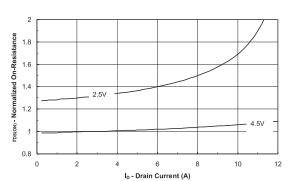
THERMAL RESISTANCE RATINGS								
Parameter	Symbol	N-Channel		P-Channel		II:4		
rarameter		Тур	Max	Тур	Max	Unit		
Marian walling a Analing a	t <= 10 sec	R_{thJA}	93	110	93	110	°C/W	
Maximum Junction-to-Ambient ^a	Steady State	$\kappa_{ ext{thJA}}$	130	150	130	150	C/W	

Notes

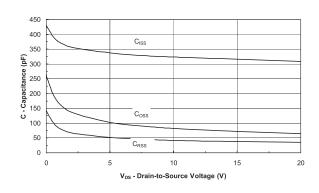

- a. Surface Mounted on 1" x 1" FR4 Board.
- b. Pulse width limited by maximum junction temperature

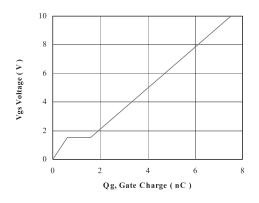

Parameter	25°C UNL	TT 4 C 3333	1	Li	mits		W.T	
	Symbol	Test Conditions	Ch	Min	Тур	Max	Unit	
Static								
Gata Thrashold Valtage	V	$V_{GS} = V_{DS}$, $I_{D} = 250 \text{ uA}$	N	1			V	
Gate-Threshold Voltage	$V_{GS(th)}$	$V_{GS} = V_{DS}$, $I_{D} = -250 \text{ uA}$	P	-1			ľ	
Gate-Body Leakage Current	I_{GSS}	VDS = 0 V, VGS = 12 V	N			100	uA	
Gate Boay Bearinge Carrent	-033	$V_{DS} = 0 \text{ V}, V_{GS} = -12 \text{ V}$ $V_{DS} = 16 \text{ V}, V_{GS} = 0 \text{ V}$	P N			-100	ui i	
		VDS = 16 V, VGS = 0 V VDS = -16 V, VGS = 0 V	P P	\vdash		-1	uA	
Zero Gate Voltage Drain Current	I_{DSS}	$V_{DS} = 16 \text{ V}, V_{GS} = 0 \text{ V}, T_{J} = 55^{\circ}\text{C}$	N			10		
		$V_{DS} = -16 \text{ V}, V_{GS} = 0 \text{ V}, T_{I} = 55^{\circ}\text{C}$	P			-10	uA	
On-State Drain Current ^A	$I_{D(on)}$	$V_{DS} = 5 \text{ V}, V_{GS} = 4.5 \text{ V}$	N	5			Α	
On-State Drain Current	*D(0n)	$V_{DS} = -5 \text{ V}, V_{GS} = -4.5 \text{ V}$	P	-5		0.050	Λ	
		$V_{GS} = 4.5 \text{ V}, I_{D} = 3.7 \text{ A}$ $V_{GS} = -4.5 \text{ V}, I_{D} = 3.1 \text{ A}$	N P			0.058	.	
	$r_{ m DS(on)}$	VGS = -4.5 V, ID = 3.1 A VGS = 2.5 V, ID = 2.7 A	N			0.112		
Drain-Source On-Resistance ^A		VGS = 2.5 V, ID = 2.7 A VGS = -2.5 V, ID = -2.2 A	P			0.172	Ω	
		$V_{GS} = 1.8 \text{ V, ID} = 2.2 \text{ A}$	N			0.160		
		VGS = -1.8 V, ID = -2.0 A	Р			0.210		
D 17 1 A		$V_{DS} = 5 \text{ V}, I_D = 3.7 \text{ A}$	N		10		C	
Forward Tranconductance ^A	$g_{ m fs}$	$V_{DS} = -5 \text{ V}, I_D = 3.1 \text{ A}$	P		5		S	
Diode Forward Voltage ^A	V_{SD}	$I_S = 1.05 \text{ A}, V_{GS} = 0 \text{ V}$	N		0.80		S	
	, 2D	$I_S = -1.05 \text{ A}, V_{GS} = 0 \text{ V}$	P		-0.83			
Dynamic ^b						_		
Total Gate Charge	Q_{g}	N-Channel	N P		7.5		ļ	
		V_{DS} =15V, V_{GS} =4.5V, I_{D} =2.7A	N		0.6	 	пС	
Gate-Source Charge	Q_{gs}	P-Channel	P		0.6			
C + D : Cl		VDS=-15V, VGS=-4.5V, ID=-3.1A	N		1.0			
Gate-Drain Charge	Q_{gd}		P		1.5			
Turn-On Delay Time	t _{d(on)}	N-Chaneel	N P		5 5		nS	
D. II.	 	$V_{DD}=15V$, $VGS=4.5V$, $ID=1A$,	N		12			
Rise Time	$t_{\rm r}$	$R_{GEN}=15\Omega$,	P		15			
Turn-Off Delay Time	$t_{d(off)}$	P-Channel	N		13			
Tana on Delay Time	rd(off)	VDD=-15V, VGS=-4.5V, ID=-1A	P		20			
Fall-Time	$t_{\rm f}$	RGEN= 15Ω	N P		7 20			

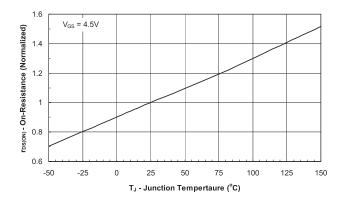
Notes


- a. Pulse test: PW <= 300us duty cycle <= 2%.
- b. Guaranteed by design, not subject to production testing.

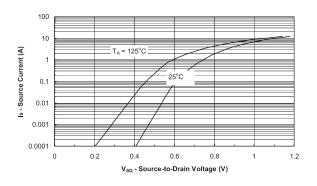
Typical Electrical Characteristics (N-Channel)

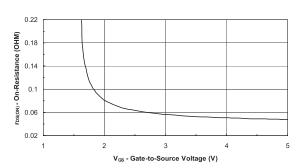



Output Characteristics

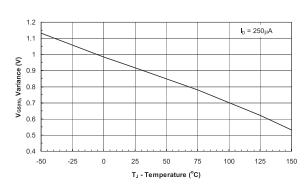

Transfer Characteristics

On-Resistance vs. Drain Current

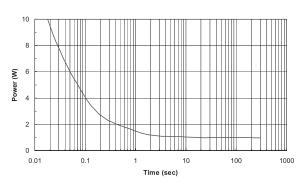

Capacitance

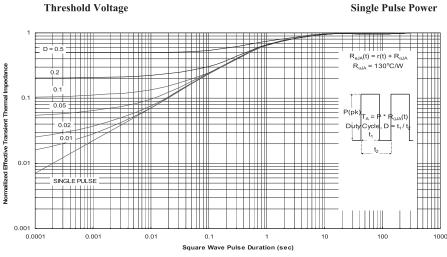


Gate Charge

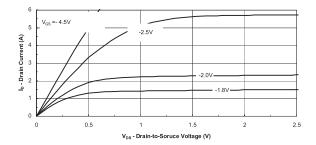

On-Resistance vs. Junction Temperature

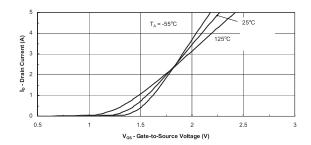
Typical Electrical Characteristics (N-Channel)



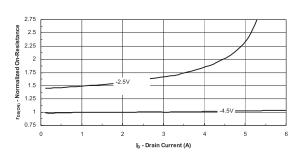

Source-Drain Diode Forward Voltage

On-Resistance vs.Gate-to Source Voltage

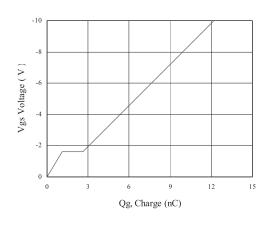


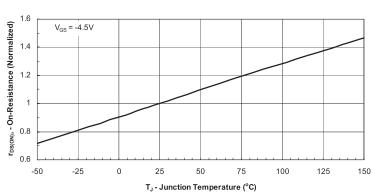

Threshold Voltage

Normalized Thermal Transient Impedance, Junction-to-Ambient


Typical Electrical Characteristics (P-Channel)

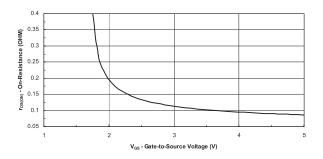
Output Characteristics


Transfer Characteristics

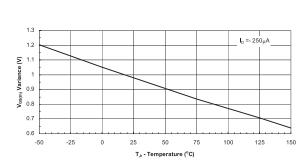


On-Resistance vs. Drain Current

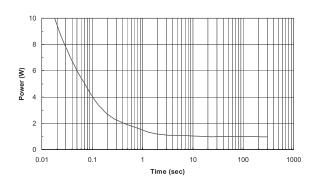
Capacitance

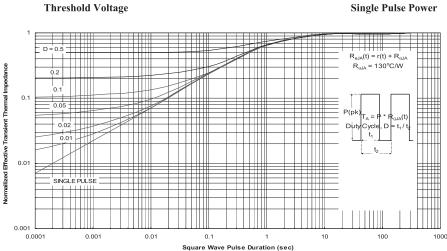


Gate Charge

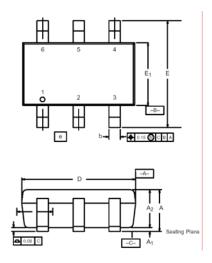

On-Resistance vs. Junction Temperature

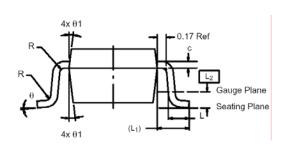
Typical Electrical Characteristics (P-Channel)




Source-Drain Diode Forward Voltage

On-Resistance vs.Gate-to Source Voltage


Threshold Voltage



Normalized Thermal Transient Impedance, Junction-to-Ambient

Package Information

TSOP-6: 6LEAD

	MIL	LIMET	ERS	INCHES			
Dim	Min	Nom	Max	Min	Nom	Max	
Α	0.91	-	1.10	0.036	_	0.043	
A ₁	0.01	-	0.10	0.0004	-	0.004	
A ₂	0.84	_	1.00	0.033	0.038	0.039	
b	0.30	0.32	0.45	0.012	0.013	0.018	
С	0.10	0.15	0.20	0.004	0.006	0.008	
D	2.95	3.05	3.10	0.116	0.120	0.122	
E	2.70	2.85	2.98	0.106	0.112	0.117	
E ₁	1.55	1.65	1.70	0.061	0.065	0.067	
е	1.00 BSC			0.0394 BSC			
L	0.35	_	0.50	0.014	-	0.020	
L ₁	0.60 Ref			0.024 Ref			
L ₂	0.25 BSC				0.010 BSC		
R	0.10	_	_	0.004	-	_	
θ	0°	4°	8°	0°	4°	8°	
θ_1	7° Nom				7° Nom		