


P-Channel 60-V (D-S) MOSFET

These miniature surface mount MOSFETs utilize a high cell density trench process to provide low $r_{DS(on)}$ and to ensure minimal power loss and heat dissipation. Typical applications are DC-DC converters and power management in portable and battery-powered products such as computers, printers, PCMCIA cards, cellular and cordless telephones.

- Low r_{DS(on)} provides higher efficiency and extends battery life
- Low thermal impedance copper leadframe DPAK saves board space
- Fast switching speed
- High performance trench technology

PRODUCT SUMMARY				
V _{DS} (V)	$r_{DS(on)} m(\Omega) = I_D($			
-60	$135 @V_{CS} = -10V$	16		
	$190@V_{C8} = -4.5V$	14		

Top View

ABSOLUTE MAXIMUM RATINGS (T _A = 25 °C UNLESS OTHERWISE NOTED)					
Parameter			Maximum	Units	
Drain-Source Voltage		VDS	-60	V	
Cate-Source Voltage		Vas	±20	V	
Continuous Drain Current ^a	$T_A=25^{\circ}C$	I _D	16	A	
Pulsed Drain Current ^b		I _{DM}	±40	A	
Continuous Source Current (Diode Conduction) ^a			-15	Α	
Power Dissipation ^a T _A =25°C		PD	50	W	
Operating Junction and Storage Temperature Range			-55 to 175	°C	

THERMAL RESISTANCE RATINGS					
Parameter	Symbol	Maximum	Units		
Maximum Junction-to-Ambient ^a	$R_{\theta JA}$	50	°C/W		
Maximum Junction-to-Case	$R_{\theta JC}$	3.0	°C/W		

Notes

a. Surface Mounted on 1" x 1" FR4 Board.

b. Pulse width limited by maximum junction temperature

Parameter	Sympol	Test Cost Ridson	Limits			TL.ª4
Faraneter	Symbol	Test Conditions		Тур	Max	Unit
Static						
Gate-Threshold Voltage	VGS(th)	$V_{DS} = V_{GS}$, $I_D = -250 \text{ uA}$	-1			
Gate-Body Leakage	Igss	$V_{DS} = 0 V, V_{GS} = \pm 20 V$			±100	nA
Zero Gate Voltage Drain Current	IDSS	$V_{DS} = -48 V$, $V_{GS} = 0 V$			-1	uA
	IDSS	$V_{DS} = -48 \text{ V}, V_{GS} = 0 \text{ V}, T_J = 55^{\circ}\text{C}$			-10	
On-State Drain Current ^A	ID(on)	$V_{DS} = -5 V$, $V_{GS} = -10 V$	-20			Α
		V_{GS} = -10 V, I_D = -28 A			135	mΩ
Drain-Source On-Resistance ^A	IDS(on)	$V_{GS} = -4.5 V$, $I_D = -14 A$			190	
Forward Tranconductance ^A	gś	V_{DS} = -15 V, I_D = -28 A		8		S
Diode Forward Voltage	Vsd	$I_{\rm S}$ =-2.5 A, $V_{\rm GS}$ =0 V			-1.2	V
Dynamic ^b						
Total Gate Charge	Qg	$V_{DS} = -30 \text{ V}, V_{GS} = -4.5 \text{ V},$ $I_D = -28 \text{ A}$		18		nC
Gate-Source Charge	Qgs			5		
Gate-Drain Charge	Qgd			2		
Tum-On Delay Time	td(on)			8		
Rise Time	tr			10		nS
Turn-Off Delay Time	td(off)			35		
Fall-Time	t _f			12		

Notes

- Pulse test: $PW \le 300$ us duty cycle $\le 2\%$. a.
- Guaranteed by design, not subject to production testing. b.