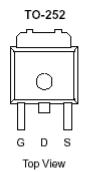



P-Channel 20-V (D-S) MOSFET


These miniature surface mount MOSFETs utilize High Cell Density process. Low $r_{DS(on)}$ assures minimal power loss and conserves energy, making this device ideal for use in power management circuitry. Typical applications are PWMDC-DC converters, power management in portable and battery-powered products such as computers, printers, battery charger, telecommunication power system, and telephones power system.

•	Low $r_{DS(on)}$ Provides Higher Efficiency and
	Extends Battery Life

- Miniature TO-252 Surface Mount Package Saves Board Space
- High power and current handling capability
- Extended VGS range (±25) for battery pack applications

PRODUCT SUMMARY			
V _{DS} (V)	$r_{\mathrm{DS}(\mathrm{on})}\left(\mathrm{m}\Omega\right)$	I _D (A)	
-20	$118 @ V_{GS} = -4.5V$	17	
-20	$178 @ V_{GS} = -2.5V$	14	

ABSOLUTE MAXIMUM RATINGS (T _A = 25 °C UNLESS OTHERWISE NOTED)					
Parameter			Maximum	Units	
Drain-Source Voltage			-20	V	
Gate-Source Voltage		V_{GS}	±12	V	
Continuous Drain Current ^a	$T_A=25^{\circ}C$	I_D	17	Α	
Pulsed Drain Current ^b		I_{DM}	±40	А	
Continuous Source Current (Diode Conduction) ^a		I_S	-30	A	
Power Dissipation ^a	$T_A=25^{\circ}C$	P_{D}	50	W	
Operating Junction and Storage Temperature Range		T _J , T _{stg}	-55 to 175	°C	

THERMAL RESISTANCE RATINGS				
Parameter	Symbol	Maximum	Units	
Maximum Junction-to-Ambient ^a	$R_{ heta JA}$	50	°C/W	
Maximum Junction-to-Case	$R_{ heta JC}$	3.0	°C/W	

Notes

- a. Surface Mounted on 1" x 1" FR4 Board.
- b. Pulse width limited by maximum junction temperature

от доптотитель (тд до		UNLESS OTHERWISE NOTED)			T		
Parameter	Symbol	Test Conditions		Limits		Unit	
			Min	Тур	Max		
Static							
Gate-Threshold Voltage	$V_{GS(th)}$	$V_{DS} = V_{GS}, I_{D} = -250 \text{ uA}$	-0.7				
Gate-Body Leakage	I_{GSS}	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 25 \text{ V}$			±100	nA	
Zero Gate Voltage Drain Current		$V_{DS} = -16 \text{ V}, V_{GS} = 0 \text{ V}$			-1	uA	
Zero Gate Voltage Drain Current	$I_{ m DSS}$	$V_{DS} = -16 \text{ V}, V_{GS} = 0 \text{ V}, T_{J} = 55^{\circ}\text{C}$			-5		
On-State Drain Current ^A	I _{D(on)}	$V_{DS} = -5 \text{ V}, V_{GS} = -4.5 \text{ V}$	-41			Α	
D : C C D : A		$V_{GS} = -4.5 \text{ V}, I_D = -17 \text{ A}$			118	mΩ	
Drain-Source On-Resistance ^A	$r_{\mathrm{DS(on)}}$	$V_{GS} = -2.5 \text{ V}, I_D = -14 \text{ A}$			178		
Forward Tranconductance ^A	g_{fs}	$V_{DS} = -10 \text{ V}, I_D = -17 \text{ A}$		31		S	
Diode Forward Voltage	V_{SD}	$I_{S} = -41 \text{ A}, V_{GS} = 0 \text{ V}$		-0.7		V	
Dynamic ^b							
Total Gate Charge	Q_{g}	$V_{DS} = -10 \text{ V}, V_{GS} = -4.5 \text{ V},$ $I_{D} = -21 \text{ A}$		12.2		пС	
Gate-Source Charge	Q_{gs}			1.1			
Gate-Drain Charge	Q_{gd}			1.5			
Switching							
Turn-On Delay Time	$t_{d(on)}$	V 10 V D 15 0 VD 41		15			
Rise Time	t _r	$V_{DD} = -10 \text{ V}, R_L = 15 \Omega, ID = -41$		12			
Turn-Off Delay Time $t_{d(}$		A, $VGEN = -4.5 \text{ V}, RG = 6\Omega$		62		nS	
Fall-Time	t_{f}	052		46			

Notes

- a. Pulse test: PW <= 300us duty cycle <= 2%.
- b. Guaranteed by design, not subject to production testing.