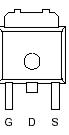


P-Channel 20-V (D-S) MOSFET


These miniature surface mount MOSFETs utilize High Cell Density process. Low $r_{DS(on)}$ assures minimal power loss and conserves energy, making this device ideal for use in power management circuitry. Typical applications are PWMDC-DC converters, power management in portable and battery-powered products such as computers, printers, battery charger, telecommunication power system, and telephones power system.

- Low r_{DS(on)} Provides Higher Efficiency and Extends Battery Life
- Miniature TO-252 Surface Mount Package Saves Board Space
- High power and current handling capability
- Extended VGS range (±25) for battery pack applications

PRODUCT SUMMARY			
V _{DS} (V)	$r_{\mathrm{DS(on)}} m(\Omega)$	I _D (A)	
-2.0	$59 @ V_{GS} = -4.5V$	24	
-20	$95 @ V_{GS} = -2.5V$	19	

TO-252

Top View

ABSOLUTE MAXIMUM RATINGS ($T_A = 25$ °C UNLESS OTHERWISE NOTED)						
Parameter			Maximum	Units		
Drain-Source Voltage		V_{DS}	-20	V		
Gate-Source Voltage		V _{GS}	±12	v		
Continuous Drain Current ^a	$T_A=25^{\circ}C$	I _D	24	А		
Pulsed Drain Current ^b		I _{DM}	±40	A		
Continuous Source Current (Diode Conduction) ^a			-30	А		
Power Dissipation ^a	T _A =25°C	P _D	50	W		
Operating Junction and Storage Temperature Range		T _J , T _{stg}	-55 to 175	°C		

THERMAL RESISTANCE RATINGS					
Parameter	Symbol	Maximum	Units		
Maximum Junction-to-Ambient ^a	$R_{\theta JA}$	50	°C/W		
Maximum Junction-to-Case	$R_{\theta JC}$	3.0	°C/W		

Notes

a. Surface Mounted on 1" x 1" FR4 Board.

b. Pulse width limited by maximum junction temperature

Parameter	Symbol	Test Conditions	Limits			TLA
	Symbol	Test Conditions	Min	Тур	Max	Unit
Static						
Gate-Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}, I_D = -250 \text{ uA}$	-0.7			
Gate-Body Leakage	I _{GSS}	$V_{DS} = 0 V, V_{GS} = \pm 25 V$			±100	nA
Zero Gate Voltage Drain Current	I _{DSS}	$V_{DS} = -16 V, V_{GS} = 0 V$			-1	uA
Zero Gate Voltage Drain Current	IDSS	$V_{DS} = -16 \text{ V}, V_{GS} = 0 \text{ V}, T_J = 55^{\circ}\text{C}$			-5	
On-State Drain Current ^A	I _{D(on)}	$V_{DS} = -5 V, V_{GS} = -4.5 V$	-41			Α
Durin Course On Desisters A	r _{DS(on)}	$V_{GS} = -4.5 \text{ V}, I_D = -24 \text{ A}$			59	mΩ
Drain-Source On-Resistance ^A		$V_{GS} = -2.5 \text{ V}, I_D = -19 \text{ A}$			95	
Forward Tranconductance ^A	g _{fs}	$V_{DS} = -10 \text{ V}, I_D = -24 \text{ A}$		31		S
Diode Forward Voltage	V _{SD}	$I_{S} = -41 \text{ A}, V_{GS} = 0 \text{ V}$		-0.7		V
Dynamic ^b						
Total Gate Charge	Qg	X = 10 X X = 45 X		16.7		
Gate-Source Charge	Q _{gs}	$V_{DS} = -10 \text{ V}, V_{GS} = -4.5 \text{ V},$ $I_{D} = -24 \text{ A}$		1.8		nC
Gate-Drain Charge	Q _{gd}	$I_D = -24 A$		1.9		
Switching						
Turn-On Delay Time	t _{d(on)}			15		
Rise Time	t _r	V_{DD} = -10 V, R_L = 15 Ω , ID = -24		12		nS
Turn-Off Delay Time	t _{d(off)}	A, $VGEN = -10 V$, $RG = 6\Omega$		62		
Fall-Time	t _f			46		1

Notes

- a. Pulse test: $PW \le 300$ us duty cycle $\le 2\%$.
- b. Guaranteed by design, not subject to production testing.